سیاهچاله‌های چرخان در درون ناحیه‌ای از فضا و زمان محصورند که در آن ثابت ماندن غیرممکن است. این ناحیه را ارگوسفر می‌نامند. این پدیده ناشی از فرایندی به نام کشش چارچوب است. تئوری نسبیت عام پیش بینی می‌کند که هر جسم در حال چرخش تمایل دارد که فضا-زمان اطراف نزدیک خود را بکشد. هر جسم نزدیک به جسم چرخان تمایل خواهد داشت که در جهت چرخش حرکت کند. برای یک سیاهچاله چرخان در نزدیکی افق رویدادش این اثر به اندازه‌ای قدرتمند می‌شود که جسم مجبور است که با سرعتی بالاتر از سرعت نور در جهت مخالف بچرخد تا تنها بتواند ثابت بماند.[۶۲]


ارگوسفر یک سیاهچاله از درون به افق رویداد می‌رسد و از بیرون به یک کره بیضوی که در قطبش با کره افق رویداد مماس می‌شود و قسمت استوایی آن بسیار پهن‌تر از سایر قسمت‌ها است پایان می‌یابد. این مرز خارجی ارگوسفر را گاهی سطح ارگو می‌نامد.


اجسام و تابش می‌توانند به‌طور عادی از ارگوسفر بگریزند. بنا بر فرایند پنروز اجسامی که از ارگوسفر خارج می‌شوند ممکن است انرژی بیشتر از انرژی ورودشان داشته باشند. این انرژی از انرژی چرخشی سیاهچاله گرفته می‌شود و باعث کندتر شدن سرعت آن می‌شود

کره فوتونی، محدوده‌ای کروی با ضخامت صفراست. فوتون‌هایی که در طول مسیر مماس (در امتداد تانژانت‌ها) بر این کره حرکت می‌کنند در مداری دایره‌ای گرد آن به دام می‌افتند. در سیاهچاله‌های غیرچرخشی شعاع فوتون کره یک و نیم برابر شعاع افق رویداد (شوارتزشیلد) است. این مدارها از نظر دینامیکی ناپایدار اند و به همین جهت هر آشفتگی کوچکی (مثل سقوط یک ذره مادی) در طول زمان گسترش می‌یابد و به صورت حرکت پرتابی به خارج سیاهچاله یا به شکل حلزونی در نهایت از افق رویداد می‌گذرد.

براساس نسبیت عام، مرکز یک سیاهچاله یک نقطه تکینگی گرانشی است، ناحیه‌ای که درآن خمیدگی فضا زمان بی‌نهایت می‌شود.[۴۹] برای یک سیاهچاله غیر چرخان این ناحیه به شکل یک نقطه منفرد و برای یک سیاهچاله چرخان به شکل یک تکینگی حلقوی روی صفحه چرخش خواهد بود.[۵۰] در هردوی موارد حجم ناحیه تکینگی صفر است.[۵۱] به همین دلیل چگالی ناحیه تکینگی، بی‌نهایت خواهد بود.


ناظری که به درون یک سیاهچاله شوارتزشیلد سقوط می‌کند (یعنی بدون بار و تکانه زاویه‌ای) به محض اینکه از افق رویداد بگذرد دیگر نمی‌تواند در مقابل سرازیر شدن به سوی نقطه تکینگی جلوگیری کند. این ناظر می‌تواند تنها تا میزان محدودی زمان سقوطش را با سرعت گرفتن در جهت مخالف طولانی‌تر کند اما سرانجام به نقطه تکینگی سقوط خواهد کرد.[۵۲] زمانی که به این نقطه برسد به چگالی بی‌نهایت برخورد می‌کند و جرم آن به جرم سیاهچاله افزوده می‌شود. البته پیش از این اتفاق در طی فرایندی که به اسپاگتی سازی یا اثر نودلی معروف است، اجزای وی بر اثر نیروهای جزر و مدی در حال گسترش از هم گسیخته می‌شود

مهمترین ویژگی که یک سیاهچاله را تعریف می‌کند پیدایش افق رویداد است. افق رویداد به شکل کروی یا تقریباً کروی با شعاع شوارتزشیلد حول نقطه مرکزی سیاهچاله‌است. این کره ناحیه‌ای از فضا زمان است که عبور نور و ماده از آن تنها در یک جهت و به طرف درون آن ممکن است. درون این کره سرعت گریز از سرعت نور بیشتر خواهد بود، و از آنجاییکه هیچ جسمی توانایی حرکت با سرعت بیشتر از سرعت نور را ندارد، هیچ جسمی توانایی گریز از این منطقه را ندارد. هر جرم یا انرژی که به یک سیاه چاله نزدیک شود، در داخل فاصله معینی که افق رویداد آن خوانده می‌شود، به‌طور مقاومت ناپذیری به درون سیاه چاله کشیده می‌شود. نوری که از اطراف یک سیاه چاله عبور می‌کند، اگر به افق رویداد نرسد، روی مسیری منحنی شکل از کنار آن می‌گذردو اگر به افق رویداد برسد، در سیاه چاله سقوط می‌کند. افق رویداد را از این رو به این نام می‌خوانند که از درون آن اطلاعات راجع به آن رخداد به مشاهده کننده نمی‌رسد و مشاهده کننده نمی‌تواند یقین حاصل کند که این اتفاق رخ داده‌است

ساده‌ترین نوع سیاهچاله‌ها آنهایی هستند که تنها جرم دارند و بار الکتریکی و تکانه زاویه‌ای ندارند. این سیاهچاله‌ها را اغلب با نام سیاهچاله‌های شوارتزشیلد می‌نامند که بر گرفته از نام کارل شوارتزشیلد است که جوابی برای معادلات میدانی انیشتین در سال ۱۹۱۶ ارائه نمود.[۱۴] بنا بر قضیه بیرخوف در نسبیت عام، تنها جواب خلأ است که متقارن کروی است. این بدان معنی است که تفاوتی میان میدان گرانشی یک سیاهچاله و یک جسم کروی با همان جرم وجود ندارد؛ بنابراین سیاهچاله تنها در محدوده نزدیک به افق آن است که همه چیز حتی نور را به درون می‌کشد و در فواصل دورتر کاملاً مانند هر جسم دیگری با همان میزان جرم رفتار می‌کند.

نظریه «بدون مو» ی جان ویلر بیان می‌کند که هر سیاهچاله پس از اینکه تشکیل شد و به وضعیت پایداری رسید، تنها سه خاصیت فیزیکی مستقل دارد: جرم، بار الکتریکی، و اندازه حرکت زاویه‌ای. از نظر مکانیک کلاسیک (غیر کوانتومی)[۳۲] دو سیاهچاله که دارای مقادیر یکسانی برای سه ویژگی یاد شده باشند، نامتمایز اند.


این سه ویژگی، ویژگی‌های خاصی هستند زیرا از بیرون سیاهچاله قابل مشاهده‌اند. مثلاً یک سیاهچاله باردار همچون هر جسم باردار دیگری بارهای همنام را دفع می‌کند. به طریق مشابهی مجموع جرم درون کره‌ای که یک سیاهچاله را دربرمی گیرد از طریق همتای قانون گاوس در مورد نیروهای گرانشی یعنی جرم ای. دی. ام نسبیت عام از فواصل بسیار دور اندازه‌گیری نمود.[۳۳] به همین ترتیب تکانه زاویه‌ای یک سیاهچاله را نیز می‌توان از راه کشش چارچوب توسط میدان مغناطیس گرانشی به دست آورد.


وقتی جسمی به درون سیاهچاله‌ای سقوط می‌کند تمام اطلاعات فیزیکی مربوط به شکل جرم یا توزیع بار سطحی آن به‌طور یکنواخت در امتداد افق رویداد توزیع می‌شود و از دید ناظر خارجی گم می‌شود. این رفتار افق رویداد به عنوان سیستم پراکنده ساز نامیده می‌شود و به آنچه در یک غشای کشی رسانا با اصطکاک و مقاومت الکتریکی رخ می‌دهد شباهت بسیار دارد.[۳۴] این تفاوت از آن دسته نظریه‌های میدانی مانند الکترو مغناطیس است که به دلیلی معکوس پذیری در زمان هیچ اصطکاک یا مقاومتی در سطح میکروسکوپیک ندارند. زیرا یک سیاهچاله در نهایت با سه پارامتر به حالت پایدار می‌رسد و هیچ راهی وجود ندارد که از گم شدن اطلاعات مربوط به شرایط اولیه اجتناب نمود: میدان‌های گرانشی و الکتریکی سیاهچاله اطلاعات بسیار اندکی در بارهٔ آنچه وارد سیاهچاله شده‌است می‌دهند. اطلاعات گم شده شامل هر کمیتی است که از فاصله دور از افق رویداد یک سیاهچاله قابل اندازه‌گیری نیستند. از جمله می‌توان از عدد باریونی و عدد لپتونی کل نام برد. این موضوع تا اندازه‌ای گیج کننده‌است که از آن به پارادوکس گم شدن اطلاعات سیاهچاله یاد می‌شود.

در سال ۱۹۵۸، دیوید فینکلشتین سطح شوارتز شیلد را به عنوان یک افق رویداد معرفی نمود، «یک غشای کاملاً یک جهته که تأثیرات سببی تنها از یک سو از آن عبور می‌کنند.»[۲۱] این مطلب تناقض صریحی با نتایج اوپنهایمر ندارد بلکه آن را گسترش می‌دهد تا ناظرین در حال سقوط به سیاهچاله را نیز شامل شود.[۲۲]


این نتایج مقارن بود با آغاز عصر طلایی نسبیت عام که در آن تحقیقات دربارهٔ نسبیت عام و سیاهچاله‌ها رونق فراوان یافت. کشف تپ اخترها در سال ۱۹۶۷ که درسال ۱۹۶۹ نشان داده شد که ستاره‌های نوترونی چرخنده با سرعت چرخش بالا هستند،[۲۳] به این فرایند کمک کرد.[۲۴][۲۵] تا آن زمان ستارگان نوترونی مانند سیاهچاله‌ها تنها در حوزه تئوری مطرح بودند، اما کشف تپ اخترها نشان داد که واقعیت فیزیکی نیز دارند و باعث شد تا علاقه شدیدی به انواع اجسام فشرده‌ای که ممکن است بر اثر رمبش گرانشی تشکیل شوند برانگیخته شود. کشف اختروش (کوازار)ها که انرژی خروجی بسیار بزرگی آنها این احتمال را مطرح نمود که ممکن است مکانیزم بوجود آورنده این انرژی، رمبش گرانشی باشد.[۲۶]


در این دوره جوابهای کلی تری نیز برای معادله سیاهچاله پیدا شد. روی کِر جواب دقیقی برای یک سیاه چاله چرخان به دست آورد. دو سال بعد ازرا نیومن یک جواب متقارن محوری برای سیاهچاله‌ای که هم چرخان باشد و هم دارای بار الکتریکی باشد کشف نمود.[۲۷] در نتیجه کارهای ورنر اسرائیل،[۲۸] براندون کارتر[۲۹][۳۰] و دیوید رابینسون[۳۱] نظریه بدون مو ظهور کرد که با استفاده از پارامترهای متریک کر-نیومن، جرم، تکانه زاویه‌ای و بار الکتریکی یک سیاهچاله ثابت را توصیف نمود.

درسال ۱۹۱۵ آلبرت اینشتین که پیش تر نشان داده بود که گرانش، نور را تحت تأثیر قرار می‌دهد، نظریه گرانش خود به نام نسبیت عام را مطرح کرد. چند ماه بعد کارل شوارتزشیلد پاسخی برای معادلات میدان اینشتین ارائه نمود که میدان گرانشی ذرات نقطه‌ای و کروی را توصیف می‌کرد.[۱۴] چند ماه پس از شوارتزشیلد، ژوهانس دروست - که از شاگردان هندریک لورنتز بود - به صورت جداگانه همان پاسخ را برای ذرات نقطه‌ای به دست آورد و بحث مفصل تری در مورد ویژگیهای آن نمود.[۱۵] این پاسخ در شعاعی که امروزه شعاع شوارتزشیلد نامیده می‌شود رفتاری غیرعادی نمایش می‌داد. زیرا در این شعاع، معادله تکینه می‌شود و برخی از اجزای آن مقدار بی‌نهایت خواهند داشت. در آن زمان ماهیت این سطح به درستی فهمیده نشده بود. در سال ۱۹۲۴ آرتور استنلی ادینگتون نشان داد که با تغییر مختصات می‌توان تکینگی را بر طرف نمود. هر چند که تا سال ۱۹۳۳ طول کشید تا ژرژ لومتر متوجه شد که مقدار بی‌نهایت این معادله در شعاع شوارتزشیلد در واقع یک تکینگی ریاضی است و جنبه فیزیکی ندارد.[۱۶] این شعاع امروزه به عنوان شعاع افق رویداد یک سیاهچاله غیرچرخشی شناخته می‌شود.


در سال ۱۹۳۰ سوبرامانیان چاندراسخار، اختر فیزیک دان هندی محاسبه نمود که یک جسم الکترون تباهیده غیر چرخنده که جرم آن از حدی که بعدها به نام حد چاندراسخار نامیده شد و ۱٫۴ برابر جرم خورشید است، بیشتر باشد هیچ جواب پایداری ندارد.[۱۷] ادعای وی از سوی هم دوره‌ای‌های وی همچون ادینگتون و لو لاندائو مورد مخالفت قرار گرفت. آنها ادعا می‌کردند که مکانیزمی ناشناخته وجود دارد که از فروپاشی این اجرام جلوگیری می‌کند.[۱۸] ادعای آنها تا حدودی درست بود زیرا یک کوتوله سفید که جرم آن اندکی از حد چاندراسخار بزرگتر باشد پس از فروپاشی به یک ستاره نوترونی تبدیل می‌شود[۱۹] که بنا بر اصل طرد پاولی، وضعیتی پایدار دارد، اما در سال ۱۹۳۹ روبرت اوپنهایمر و دیگران پیش بینی کردند که ستاره‌های نوترونی که جرمی بیشتر از سه برابر جرم خورشید دارند به دلایلی که توسط چاندراسخار ارائه شد، به سیاهچاله فروپاشی می‌شوند و نتیجه‌گیری کردند که هیچ سازوکار فیزیکی نمی‌تواند از فروپاشی برخی ستارگان به سیاهچاله جلوگیری نماید.

ابداع واژه «کرم‌چاله»[۹] و «سیاه‌چاله فضایی»[۱۰] به جان ویلر نسبت داده شده‌است. با این‌حال، این مفهوم از مدت‌ها قبل به صورت‌های متفاوتی مطرح بوده‌است.


مفهوم جسمی که آن قدر پرجرم است که حتی نور هم نمی‌تواند از آن بگریزد، نخستین باراز سوی زمین‌شناسی به نام جان میچل درسال ۱۷۸۳ در نامه‌ای که برای هنری کاوندیش از انجمن سلطنتی نوشته بود، مطرح شد. در آن زمان مفهوم نظریه گرانش نیوتن و مفهوم سرعت گریز شناخته شده بودند. طبق محاسبات میشل جسمی با شعاع خورشید و چگالی ۵۰۰ برابر در سطح خود سرعت گریزی بیش از سرعت نور خواهد داشت و بنابر این غیرقابل مشاهده خواهد بود. به بیان او:


    اگر شعاع کره‌ای مشابه خورشید قرار باشد که با چگالی ۵۰۰ بار از آن بزرگ‌تر باشد، جسمی که از ارتفاع بینهایت به سمت آن سقوط می‌کند در سطح آن سرعتی بیش ازسرعت نور به دست می‌آورد، و اگر فرض کنیم نور با نیروی مشابهی به سمت ستاره کشیده شود، آنگاه همه نوری که از چنین جسمی ساطع می‌شود به ناچار به وسیله گرانش آن به سمت خود ستاره بازمی‌گردد.

سیاه‌چاله ها ناحیه‌ای از فضا-زمان است که آثار گرانشی آن، چنان نیرومند است که هیچ چیز - حتی ذرات و تابش های الکترومغناطیسی مثل نور - نمی توانند از میدان گرانش آن بگریزد.[۱] نظریه نسبیت عام آلبرت اینشتین پیش بینی می‌کند که یک جرم به اندازه کافی فشرده شده، می‌تواند سبب تغییر شکل و خمیدگی فضا-زمان و تشکیل سیاهچاله شود. مرز این ناحیه از فضازمان که هیچ چیزی پس از عبور از آن نمی‌تواند به بیرون برگردد را افق رویداد می نامند. صفت «سیاه» در نام سیاه‌چاله برگرفته از این واقعیت است که همه نوری که از افق رویداد آن می گذرد را به دام می‌اندازد که از این دیدگاه سیاه چاله رفتاری شبیه به جسم سیاه در ترمودینامیک دارد.[۲][۳] از سوی دیگر نیز، نظریه میدانهای کوانتومی در فضازمان خمیده پیش‌بینی می‌کند که افق های رویداد نیز تابشی به نام تابش هاوکینگ گسیل می کنند که طیف آن همانند طیف جسم سیاهی است که دمای آن با جرمش نسبت وارونه دارد. میزان دما در مورد سیاهچاله‌های ستاره‌ای در حد چند میلیاردم کلوین است و از این رو ردیابی آن دشوار است.